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ABSTRACT 
 

The emergence of Generative Artificial Intelligence (GenAI) presents new possibilities for 

transforming structural optimization processes in civil and structural engineering. Unlike 

traditional AI models focused on prediction or classification, GenAI models, such as 

Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Diffusion 

Models, and Large Language Models (LLMs), enable the generation of novel structural 

designs by learning complex patterns within design-performance data. This paper provides a 

comprehensive review of how GenAI can support tasks such as design generation, inverse 

design, data augmentation for surrogate modeling, and multi-objective trade-off exploration. 

It also examines key challenges, including constraint integration, model interpretability, and 

data scarcity. By evaluating recent applications and proposing hybrid frameworks that blend 

generative modeling with domain knowledge and optimization strategies, this study outlines 

a research roadmap for the responsible and effective use of GenAI in structural optimization. 

The findings emphasize the need for interdisciplinary collaboration to translate GenAI’s 

creative potential into physically valid, structurally sound, and engineering-relevant solutions. 
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1. INTRODUCTION 
 

The field of structural optimization has long played a pivotal role in advancing the efficiency, 

safety, and sustainability of civil [1-3], mechanical [4, 5], and aerospace engineering systems 

[6, 7]. By systematically exploring design alternatives to meet performance objectives under 

a range of constraints, structural optimization has enabled the development of lighter, stronger, 

and more cost-effective structures. Traditional approaches, ranging from gradient-based 

methods [8] to evolutionary algorithms [9, 10] and surrogate-assisted models [11], have 

significantly matured, yet they remain heavily reliant on computational resources, human 

intuition, and domain-specific heuristics. With growing complexity in structural systems and 

the demand for real-time, adaptable design solutions, there is a pressing need for more 

intelligent, autonomous, and generative approaches [12]. 

Generative Artificial Intelligence (GenAI) represents a transformative shift in how data, 

models, and design spaces can be synthesized and explored [13]. Unlike conventional 

Machine Learning (ML) models that focus primarily on prediction, GenAI encompasses a 

class of algorithms capable of creating new data instances that resemble the underlying 

distribution of the training data. Techniques such as Generative Adversarial Networks (GANs) 

[14], Variational Autoencoders (VAEs) [15], Diffusion models [16], and Large Language 

Models (LLMs) [17] have demonstrated remarkable success in fields like image generation 

[18], text synthesis [19], computer-aided design [20], inverse modelling [21], and simulation 

acceleration [22].  

While recent studies have begun to explore the integration of GenAI models into structural 

optimization workflows, such as their application in tall building optimization [23], 

conceptual structural form generation [24], and surrogate modeling [25] for high-dimensional 

design problems, the field remains in its infancy, with most developments still at a proof-of-

concept or exploratory stage. Importantly, most GenAI models were originally developed for 

domains like image, text, and data synthesis, and are not inherently tailored to meet the 

specific constraints and physical laws governing structural systems, [26]. As a result, their 

direct application in structural optimization presents several challenges.  

This paper aims to provide a comprehensive overview of the intersection between GenAI 

and structural optimization. We begin by outlining the foundational principles of both fields, 

followed by an examination of the current research landscape that explores their intersection 

and integration. Key opportunities and challenges are identified, followed by a discussion on 

emerging applications and future directions. By synthesizing knowledge across computational 

intelligence and structural engineering, this paper seeks to guide researchers and practitioners 

in leveraging GenAI to shape the next generation of intelligent design and optimization 

systems. 

 

 

2. BACKGROUND 

 

2.1. Structural Optimization 

Structural optimization focuses on systematically improving a structure’s performance 

while satisfying design constraints. It is typically formulated as, [2]: 
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𝑚𝑖𝑛
𝑥

𝑓(𝒙) 

𝑠. 𝑡.    𝑔𝑖(𝒙) ≤ 0,          𝑖 = 1,2, … , 𝑚 

           ℎ𝑗 (𝒙) = 0, 𝑗 = 1,2, … , 𝑝 

𝒙 ∈ 𝛀 

(1) 

where x denotes the design variables (number of sections or cross-sectional area of 

elements or geometry variables), f(x) is the objective function (e.g., weight or cost), and 𝑔𝑖(𝑥) 

and ℎ𝑗 (𝑥) are inequality and equality constraints (e.g., stress, displacement, frequency or 

geometry constraints). 

Depending on the representation of design variables and objectives, problems are classified 

as: 

 

a) Size Optimization 

In size optimization, the structural layout or topology is assumed to be fixed, and the design 

process focuses on finding the optimal values of specific dimensional parameters that 

influence performance, [27]. The design variables typically correspond to the sizes of 

structural components, such as cross-sectional areas of truss or frame members, thicknesses 

of plates or shells, or diameters of reinforcing bars. 

The objective of size optimization is often to minimize structural weight, material cost, or 

compliance (a measure of structural flexibility), while satisfying stress, displacement, 

buckling, frequency, and serviceability constraints. A general formulation can be written as, 

[1]: 

 

𝑚𝑖𝑛
𝒙

𝑓(𝒙) = ∑ 𝜌𝑙𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑠. 𝑡.        𝜎𝑖(𝒙) ≤ 𝜎𝑎𝑙𝑙𝑜𝑤,   ∀𝑖  

           𝛿𝑗(𝒙) ≤ 𝛿𝑎𝑙𝑙𝑜𝑤,   ∀𝑗 

𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥  ,   𝑖 = 1,2, … , 𝑛 

(2) 

where, xi are the size variables, 𝜌 is the material density, li is the element length, σi and δj 

are stress and displacement values, σallow and δmax  are allowable stress and displacement limits. 

Size optimization is widely used in preliminary and detailed design stages for steel frames, 

trusses, reinforced concrete members, and composite structures. It is also a core component 

of many code-based optimization routines, where standard section sizes must be selected from 

design tables to meet structural requirements. 

 

b) Shape Optimization 
In shape optimization, the goal is to enhance structural performance by modifying the 

geometry of the structure’s boundaries, such as the outer contour or internal voids, while 

keeping the topology (i.e., connectivity and number of components) fixed, [28]. This type of 

optimization allows adjustment of both the positions of boundary nodes and control 

parameters of geometric entities. In some formulations, shape optimization is performed in 

combination with size optimization, enabling simultaneous refinement of geometric 
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boundaries and element dimensions. Unlike size optimization, which adjusts scalar design 

variables associated with element properties, shape optimization directly affects the spatial 

configuration of the structure. However, it does not allow the creation or removal of holes, 

branches, or components, as that would alter the topology. 

The mathematical formulation of shape optimization is often embedded within a structural 

analysis framework, and can be written as, [29]: 

 

𝑚𝑖𝑛
𝒙𝒔𝒉𝒂𝒑𝒆

𝑓(𝒙𝒔𝒉𝒂𝒑𝒆) 

𝑠. 𝑡.      𝚱(𝒙𝒔𝒉𝒂𝒑𝒆)𝒖 = 𝑭  

𝑠. 𝑡.    𝑔𝑖(𝒙𝒔𝒉𝒂𝒑𝒆) ≤ 0,          𝑖 = 1,2, … , 𝑚 

𝒙𝒔𝒉𝒂𝒑𝒆 ∈ 𝛀𝒂𝒅𝒎𝒊𝒔𝒔𝒊𝒃𝒍𝒆 

(3) 

where, xshape  denotes the coordinates or shape parameters, f(xshape) is the objective function, 

K(xshape) is the shape-dependent stiffness matrix, u is the displacement vector obtained from 

finite element analysis (FEA), and F is the external force vector. gi(⋅) are performance or 
constraint functions, and Ωadmissible defines bounds on shape parameters to ensure 

manufacturability or physical feasibility. 

This problem is widely used in aerospace, mechanical, and civil engineering applications 

where precise control over stress concentration zones, flow boundaries, or resonance 

frequencies is critical. 

 

c) Topology Optimization 
Topology optimization seeks to determine the optimal material layout within a predefined 

design domain to achieve the best structural performance under given loading and boundary 

conditions, [30]. Unlike size or shape optimization, which operate within a predefined 

structural configuration, topology optimization does not assume any initial layout. It allows 

for the emergence of new holes, branches, and load paths, enabling innovative, highly 

efficient, and often unintuitive designs. 

The design variable in topology optimization is typically a material density field 

ρ(x)∈[0,1], defined over the elements or voxels of the discretized domain. A density of ρ=1 

indicates the presence of solid material, while ρ=0 represents void. Intermediate values are 

penalized to push the solution toward a binary (0–1) distribution. 

The standard compliance minimization problem in topology optimization can be 

formulated as, [31, 32]: 

 

𝑚𝑖𝑛
𝜌

𝑓(𝜌) = 𝒖𝑇𝚱(𝜌)𝒖 

𝑠. 𝑡.      𝑉(𝜌) = ∑ 𝜌𝑖𝑣𝑒

𝑒

 ≤ 𝑉0 

𝚱(𝜌)𝒖 = 𝑭,   𝜌𝑒 ∈ [𝜌𝑚𝑖𝑛, 1] ∀𝑒 

(4) 
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where, ve is the volume of element e, V0 is the maximum allowable material volume, and 

ρmin is a small positive lower bound to avoid singular stiffness matrices. 

Topology optimization is computationally intensive because it involves solving a finite 

element equilibrium equation and updating material distribution iteratively. Despite these 

costs, it has become an essential tool in lightweight design, additive manufacturing, and 

conceptual design of structural systems in aerospace, automotive, and civil engineering 

domains. 

 
2.2. Solution Strategies in Structural Optimization 

Selecting an appropriate optimization strategy is critical for solving structural optimization 

problems efficiently and reliably. The choice largely depends on the nature of the objective 

and constraint functions, the size and dimensionality of the problem, and the availability of 

gradient information. Broadly, solution strategies can be categorized into gradient-based 

methods, metaheuristic algorithms, surrogate-assisted methods, and hybrid frameworks that 

integrate multiple paradigms (Figure 1). 

 

 
Figure 1: Optimization strategies for solving structural optimization. 

 

Gradient-based optimization methods rely on first- and second-order derivative 

information to guide the search direction. These methods, such as Sequential Quadratic 

Programming (SQP) [33], Method of Moving Asymptotes (MMA) [34], and Interior Point 

Methods [35], are particularly effective for problems with smooth, differentiable objective 

and constraint functions, as commonly encountered in size and shape optimization with well-

behaved finite element models. Their convergence is typically fast and efficient, especially in 

low- to moderate-dimensional spaces. However, they are sensitive to local minima, may fail 

in non-convex or discrete spaces, and require accurate sensitivity analysis, which can be 

computationally expensive or difficult to derive analytically for complex systems. 

Optimization 
strategies 

Gradient-
based 

methods

Surrogate-
assisted 
methods

Metaheuristic 
algorithms

Hybrid 
frameworks 
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To address non-convexity, discontinuities, and large-scale combinatorial spaces, 

particularly in large-scale design optimization problems, material layout problems, or 

constraint-rich design scenarios, metaheuristic algorithms are widely employed, [36]. These 

methods do not require gradient information and are well-suited for exploring complex design 

spaces. However, their stochastic nature often leads to longer convergence times, and they 

may require a large number of objective function evaluations, posing a significant burden 

when each evaluation involves expensive simulations, [12]. 

To mitigate computational cost, especially in high-fidelity or high-dimensional problems, 

surrogate-assisted optimization has become a prominent strategy, [37]. Surrogate models use 

inexpensive approximations to estimate the objective and constraint functions, thereby 

reducing the number of expensive evaluations. Common surrogate modeling techniques 

include Gaussian Process Regression [38], Radial Basis Function [39], Polynomial Regression 

[40], Artificial Neural Networks [41] along with other traditional ML approaches widely used 

for function approximation in structural optimization. In such frameworks, an initial sample 

set is used to train the surrogate model, which is then refined iteratively via adaptive sampling, 

infill criteria, and uncertainty quantification.  

Recently, hybrid frameworks have gained attention by integrating surrogate models, 

metaheuristics [42], and even Reinforcement Learning [43] to dynamically balance 

exploration and exploitation, adapt search strategies on-the-fly, and handle expensive or 

partially known objective landscapes. Such frameworks are particularly suitable for multi-

objective optimization [44], expensive problems [45], and real-time applications in structural 

health monitoring [46].  

 

 

3. FROM ARTIFICIAL INTELLIGENCE TO GENAI: PRINCIPLES AND 

TECHNIQUES 
 

Artificial Intelligence (AI) is a foundational discipline in computer science that aims to 

develop computational systems capable of mimicking human cognitive functions such as 

reasoning, learning, perception, decision-making, and adaptation. Historically, AI began as a 

rule-based system paradigm, where explicit logical rules and symbolic reasoning engines were 

manually encoded to solve problems, [47]. Early AI applications included chess-playing 

programs, expert systems for medical diagnosis, and search-based planning algorithms. While 

powerful for well-defined, narrow domains, these systems struggled with ambiguity, scale, 

and the variability inherent in real-world data, [48]. 

The field evolved with the rise of ML, a subset of AI that allows systems to learn from data 

rather than rely on hard-coded rules. ML models infer patterns, trends, and relationships within 

datasets to make predictions or decisions without being explicitly programmed for every 

possible scenario, [49]. ML is generally divided into, [50]: 

 

• Supervised learning, where models learn from labeled, 

• Unsupervised learning, which discovers hidden structures in unlabeled data, 

• Reinforcement learning, where agents learn to make sequences of decisions through 

reward-based feedback. 
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Most classical ML models are discriminative, meaning they aim to model the conditional 

probability P(y∣x), learning to map inputs x to outputs y. These models have powered a wide 

array of applications, including predictive maintenance, structural health monitoring, and 

automated quality control. 

However, GenAI represents a paradigm shift within ML. Instead of predicting labels or 

outcomes, GenAI models learn the joint probability distribution P(x) or conditional generative 

processes P(x∣z), where z is a latent variable, [13]. In doing so, these models can generate new 

data instances that are statistically similar to those seen during training, often exhibiting 

remarkable creativity, diversity, and realism. This capability allows GenAI to answer 

fundamentally different questions, “What could a plausible design look like?” or “What is the 

space of feasible structural configurations?”. 

This transition has been incremental but transformative. Early generative models like naive 

Bayes and Hidden Markov Models (HMMs) [51] laid the groundwork for probabilistic 

generation in simple domains. Subsequent advances in neural networks have led to the 

development of powerful deep generative models, including techniques such as Variational 

Autoencoders, Generative Adversarial Networks, Diffusion Models, and Transformer-based 

architectures. 

 

a) Generative Adversarial Networks  

GANs are a class of generative models composed of two neural networks, the generator 

G(z) and the discriminator D(x), trained simultaneously in a competitive setting as shown in 

Figure 2, [14]. The generator maps a latent vector z, typically sampled from a multivariate 

normal distribution N(0,I), to the data space to produce synthetic samples 𝒙̂ = 𝐺(𝑧). The 

discriminator receives both real samples x∼Pdata and generated ones, and learns to distinguish 

between the two, outputting a probability that indicates whether a given input is real or fake. 

The training process is formulated as a minimax game, in which the discriminator seeks to 

maximize its ability to correctly distinguish real from generated data, while the generator 

simultaneously attempts to minimize this ability by producing increasingly realistic outputs, 

[52]. Mathematically, this adversarial objective is expressed as, [14]: 

 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝔼𝒙~𝑃𝑑𝑎𝑡𝑎
[log 𝐷(𝒙)] + 𝔼𝒛~𝑃𝑧

[log(1 − 𝐷(𝐺(𝒙)))] (5) 

 

GANs have demonstrated strong capabilities in producing high-fidelity, high-dimensional 

outputs, making them attractive for generative tasks in many fields. However, they also face 

significant challenges including training instability, mode collapse, and sensitivity to network 

architecture and hyperparameters. Despite these limitations, their capacity to learn implicit 

distributions without explicit labels makes GANs a promising tool in early-stage structural 

design and conceptual modeling workflows. 

 

Initialize Generator G and Discriminator D with random weights 
for number of training epochs: 

    for each batch of real data x_real: 

         
        # ---- Train Discriminator ---- 

        Sample noise vector z from prior distribution (e.g., normal) 
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        Generate fake data: x_fake = G(z) 
         

        Compute D_loss: 

            - D_loss_real = -log(D(x_real)) 
            - D_loss_fake = -log(1 - D(x_fake)) 

            - D_loss = D_loss_real + D_loss_fake 

         
        Update Discriminator parameters to minimize D_loss 

 

        # ---- Train Generator ---- 
        Sample new noise vector z 

        Generate fake data: x_fake = G(z) 

         
        Compute G_loss: 

            - G_loss = -log(D(x_fake))  # Generator tries to fool the discriminator 

         
        Update Generator parameters to minimize G_loss 

Figure 2: Simplified pseudocode of the GAN training loop. 

 

b) Variational Autoencoders  

VAEs are a class of probabilistic generative models that learn to represent input data in a 

compressed latent space and generate new, similar data by sampling from that latent space, 

[15]. A VAE consists of two main components: an encoder and a decoder. Figure 3 provide 

the pseudocode of the VAE training loop. The encoder maps an input x to a distribution over 

a latent variable z, typically a multivariate Gaussian qϕ(z∣x)∼N(μ,σ2). The decoder then 

samples from this latent space and reconstructs the data via pθ(x∣z). Unlike classical 

autoencoders, which learn deterministic mappings, VAEs incorporate stochasticity and are 

trained to maximize the Evidence Lower Bound (ELBO) on the data likelihood, [53]. 

The training objective of a VAE balances two goals: (1) ensuring accurate reconstruction 

of the input data and (2) regularizing the latent space to follow a prior distribution, typically 

p(z)=N(0,I). The loss function is given by, [15]: 

 

ℒ(𝜃, ∅; 𝒙) = 𝔼𝑞∅(𝒛|𝒙)[log(𝑃𝜃(𝒙|𝒛))] − KL [𝑞∅(𝒛|𝒙)‖𝑃(𝒛)] (6) 

where, qϕ(z∣x) is the encoder, pθ(x∣z) is the decoder (generative model) and KL[⋅∥⋅] is the 

Kullback–Leibler divergence, enforcing similarity between the learned latent distribution and 

the prior. 

VAEs ability to produce diverse yet plausible outputs, while maintaining a smooth and 

interpretable latent space, makes them attractive for tasks such as parametric form generation, 

topology exploration, and embedding structural constraints into generative processes. 

 

 
Initialize Encoder network qϕ(z|x) 

Initialize Decoder network pθ(x|z) 
 

for number of training epochs: 

    for each batch of input data x: 
         

        # ---- Encode ---- 

        Encode x to obtain mean μ and standard deviation σ 
        Sample latent vector z using reparameterization: 

            z = μ + σ * ε, where ε ~ N(0, I) 
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        # ---- Decode ---- 

        Reconstruct input: x_recon = Decoder(z) 

 
        # ---- Compute Loss ---- 

        Compute reconstruction loss: 

            L_recon = ||x - x_recon||^2  (or use binary cross-entropy) 
         

        Compute KL divergence loss: 

            L_KL = D_KL[ N(μ, σ^2) || N(0, I) ] 
 

        Total loss: 

            L_total = L_recon + L_KL 
 

        # ---- Update Parameters ---- 

        Backpropagate and update Encoder and Decoder to minimize L_total 

Figure 3: Simplified pseudocode of the VAE training loop. 

 

c) Diffusion Models 

Diffusion Models are a class of generative models that learn to generate data by reversing 

a gradual noising process, [16]. The core idea is to start with a sample of pure noise and 

progressively denoise it over a series of steps to produce a coherent, realistic data sample. This 

is achieved by first training a model to learn the reverse of a diffusion (noising) process, which 

systematically corrupts data over time by adding small amounts of Gaussian noise. During 

training, the model learns to estimate the denoised data at each time step, allowing it to 

reconstruct data from noise at inference time. 

Mathematically, the forward diffusion process gradually transforms a data sample x0 into 

a noise vector xT through a series of steps, [16]: 

 

𝑞(𝒙𝑡|𝒙𝑡−1) = 𝑁(𝒙𝑡; √1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡𝑰) (7) 

where βt  controls the noise variance at each timestep. The generative model then learns 

the reverse process pθ(xt−1∣xt), effectively denoising xt back to x0. Simplified pseudocode of 

the training loop for a Diffusion Model is presented in Figure 4. 

High output diversity, stable training dynamics, and strong fidelity to the underlying data 

distribution are among the key advantages of diffusion models. However, these benefits come 

at the cost of increased computational complexity, long inference times, and the need for large 

training datasets, which can pose challenges for their deployment in real-time or resource-

constrained structural optimization workflows. 

 
Initialize denoising neural network εθ(x_t, t) 

 
for number of training epochs: 

    for each batch of real data x_0: 

 
        # ---- Forward diffusion (noising process) ---- 

        Sample timestep t ~ Uniform(1, T) 

        Sample noise ε ~ N(0, I) 
        Compute noisy input: 

            x_t = sqrt(ᾱ_t) * x_0 + sqrt(1 - ᾱ_t) * ε 

 
        # ---- Training objective ---- 

        Predict noise: ε_pred = εθ(x_t, t) 

        Compute loss: 
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            L = ||ε - ε_pred||^2 
 

        # ---- Update model parameters ---- 

        Backpropagate and update εθ to minimize L 

Figure 4: Simplified pseudocode of the training loop for a Diffusion Model. 

 
d) Large Language Models  

LLMs are transformer-based deep learning models trained to understand and generate 

human-like text by modeling the probability distribution over sequences of tokens, [54]. These 

models, such as GPT, BERT, and LLaMA, are trained on massive corpora of text and learn to 

capture complex semantic, syntactic, and contextual relationships. Given a sequence of tokens 

(x1,x2,…,xT), LLMs model the joint distribution as a product of conditional probabilities, [17]: 

 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑇) = ∏ 𝑃(𝑥𝑡|𝑥1, 𝑥2, … , 𝑥𝑡−1)

𝑇

𝑡=1

 (8) 

 
This autoregressive formulation allows them to perform a wide range of tasks such as code 

generation, symbolic reasoning, knowledge retrieval, and question answering—without task-

specific retraining. Simplified pseudocode of an autoregressive LLM training loop is as 

provided in Figure 5. 

Although initially developed for language-based tasks, LLMs are increasingly being 

applied in engineering domains due to their ability to interface with structured knowledge, 

generate design-related code or scripts, and translate high-level specifications into 

computational tasks. 

 
Initialize Transformer-based model with parameters θ 

 
for number of training epochs: 

    for each batch of token sequences (x₁, x₂, ..., x_T): 

 
        # ---- Language Modeling Objective ---- 

        For each position t in the sequence: 

            Predict next token: x̂_t = Model(x₁, ..., x_{t-1}) 
         

        # ---- Compute Loss ---- 

        Cross-entropy loss: 
            L = - Σ_t log P(x_t | x₁, ..., x_{t-1}) 

 

        # ---- Update Model ---- 
        Backpropagate and update θ to minimize L 

Figure 5: Simplified pseudocode of an autoregressive LLM training loop. 

 

 

4. INTERSECTION OF GENAI AND STRUCTURAL OPTIMIZATION 
 

The integration of GenAI into structural optimization introduces a transformative shift in how 

design spaces are explored, evaluated, and automated. While traditional optimization 

workflows rely heavily on numerical simulations, heuristic search algorithms, or manually 

constructed surrogate models, GenAI offers new capabilities such as the automated generation 
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of structurally plausible forms, inversion of performance-to-design mappings, and intelligent 

support for navigating complex multi-objective trade-offs.  

Figure 6 presents a bibliometric co-occurrence network generated from Scopus [55], using 

keywords related to generative models and structural optimization. The visualization reveals 

several thematic clusters, where the size of each node represents keyword frequency, and the 

thickness of edges indicates co-occurrence strength. As observed, “deep learning” emerges as 

the most central and frequently occurring term, reflecting its dominant role in current AI-

driven structural optimization research. Closely linked terms such as “topology optimization”, 

and “structural design” form a core cluster of applied methodologies. 

In contrast, terms explicitly associated with “generative AI”, such as “generative 

adversarial networks”, “variational autoencoder”, “diffusion model”, and “transformer”, 

appear with much lower frequency and are situated on the periphery of the network. This 

suggests that while deep learning methods are well established in the structural optimization 

domain, the application of GeneAI techniques remains emergent and exploratory. The 

presence of clusters like “generative design”, “intelligent structural design”, and “design 

automation” indicates a growing but still fragmented research effort toward integrating GenAI 

into structural workflows. Overall, the figure highlights both the increasing interest in this 

interdisciplinary space and the substantial opportunity for deeper integration of generative AI 

into structural design and optimization research.  

 

 
Figure 6: Keyword co-occurrence network related to generative AI and structural optimization, 

based on Scopus-indexed publications, (based on the data of [55]). 
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4.1. Design Generation 

One of the most direct applications of GenAI in structural optimization is design 

generation, where generative models are trained to produce plausible structural layouts, 

geometries, or topologies. Given a dataset of optimized or physically valid designs, these 

models can learn the underlying distribution and generate new design candidates that adhere 

to similar structural principles. This approach is particularly valuable in early-stage conceptual 

design, where engineers often require a diverse set of creative yet structurally viable 

alternatives without executing a full-scale optimization process for each option, [23]. For 

instance, GANs have been applied to generate initial shear wall configurations for tall 

buildings, providing a foundation for downstream refinement through optimization techniques 

[56, 57]. Such use cases demonstrate the ability of GenAI to accelerate ideation, enable 

automation of preliminary layouts, and reduce the computational burden in design iteration 

cycles, {Gradišar, 2024 #58}. 

 
4.2. Data Augmentation for Training Surrogates 

In many structural optimization scenarios, building accurate surrogate models is limited by 

the scarcity of diverse, high-quality training data, especially when obtaining design samples 

through physics-based simulations is computationally expensive, {Talatahari, 2025 #12}. 

Generative AI models offer a powerful mechanism for data augmentation by learning 

compact, meaningful representations of design spaces and generating new, performance-

informed design instances. 

Recent studies {Danhaive, 2021 #59} have demonstrated how design subspace learning 

using VAEs can uncover a structured latent space that captures the essential features of 

feasible designs. From this latent space, new candidate designs can be sampled that preserve 

structural plausibility and performance similarity to known solutions. For example, a VAE 

trained on a limited dataset of optimized structure configurations can generate diverse variants 

that conform to learned engineering constraints, thereby expanding the training set for 

surrogate models without requiring additional full-scale simulations. This GenAI-driven data 

generation not only improves diversity and coverage of the design space but also reduces 

overfitting and enhances generalization of surrogate models, especially in high-dimensional 

or multi-fidelity optimization settings. Furthermore, integrating generated data into surrogate-

assisted workflows provides a performance-informed yet creative design augmentation 

strategy, overcoming traditional bottlenecks in data-limited structural optimization pipelines. 

 

4.3. Multi-Objective Trade-Off Exploration 

Structural optimization frequently involves multiple, often conflicting objectives, such as 

minimizing weight while maximizing stiffness, or reducing cost without compromising safety, 

{TalatAhari, 2024 #61}. Exploring these trade-offs requires not only efficient sampling of the 

design space but also intelligent strategies for constructing and navigating the Pareto front. 

Generative AI models, when integrated with multi-objective optimization frameworks, 

provide a promising avenue for enhancing this exploration. 

The recent use of tuned constraint-modified GANs for data augmentation in complex 

material design (as shown in engineered cementitious composite mixture optimization studies) 

demonstrates the potential of generative models to expand feasible regions of the design space 
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and support multi-objective search, {Wang, 2024 #62}. Optimization algorithms, which 

incorporate reference-point strategies, can then efficiently guide the search through high-

dimensional design spaces involving both performance and cost objectives. 

 
4.4. Encoding Design Constraints and Objectives 

A major challenge in generative design is ensuring that generated outputs satisfy domain-

specific constraints, such as stress limits, deflection bounds, or regulatory codes. Traditional 

GenAI models operate in unconstrained domains, but recent efforts have explored ways to 

embed constraints explicitly or implicitly. One avenue is through prompt engineering or fine-

tuning LLMs to interpret constraints described in engineering language and translate them into 

structured input for optimization or simulation tools, {Ploennigs, 2024 #63}. Alternatively, 

physical constraints can be embedded during training through loss function penalties or 

physics-informed architectures to bias generation toward feasible designs. 

 

 

5. OPPORTUNITIES AND CHALLENGES 
 

The integration of GenAI into structural optimization presents a unique opportunity to redefine 

how engineers approach design exploration, modeling, and problem-solving. While early-

stage studies have begun to reveal its transformative potential, substantial gaps remain in 

theoretical development, practical application, and integration with existing engineering tools. 

This section presents a balanced assessment of the major opportunities offered by GenAI in 

structural optimization, along with the key challenges that must be addressed to enable wider 

adoption and impact. 

The benefits of using GenAI in this field can be summarised as follows: 

 

a) Accelerated and Automated Design Exploration: GenAI enables the rapid generation of 

structurally plausible designs, allowing engineers to explore large, complex design spaces 

without solving full-scale optimization problems repeatedly. This is particularly beneficial in 

early-stage conceptual design or for ideation across multi-objective trade-offs. 

 

b) Learning from Prior Knowledge and Data: Unlike traditional optimization methods that 

start from scratch, generative models can learn structural patterns from prior designs or 

simulation datasets. This enables knowledge reuse, data-driven creativity, and the ability to 

generalize across similar structural problems or geometries. 

 

c) Bridging Engineering and Natural Language Interfaces: LLMs allow engineers to 

articulate constraints, objectives, or preferences using natural language, lowering the barrier 

for non-expert users. This paves the way for interactive design assistants and generative co-

pilots that can translate engineering intent into computational design parameters. 

 

d) Integration with Surrogates and Reduced-Order Models: Generative models complement 

surrogate modeling by enriching training datasets and representing design distributions in 

latent space. They can also produce inputs to surrogate models, thereby reducing the cost of 

expensive simulations and supporting real-time design iterations. 
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e) Enabling Inverse and Constraint-Aware Design: Conditional generative models allow for 

inverse mapping from desired structural performance to feasible design candidates, bypassing 

the need for iterative trial-and-error. Emerging physics-informed GenAI approaches can 

further integrate physical constraints directly into the generative process. 

Despite these opportunities, several challenges must also be acknowledged and addressed 

to ensure the effective integration of Generative AI into structural optimization, such as: 

 

a) Lack of Domain-Specific Training Data: High-performing generative models require 

large, diverse datasets, but such data is limited in civil and structural engineering. Unlike 

domains like computer vision, curated databases of labeled structural layouts, simulations, or 

design-performance pairs are scarce. 

 

b) Physical Inconsistency and Constraint Violation: Most GenAI models were developed 

for media domains and do not inherently enforce equilibrium, compatibility, or material 

laws. Without explicit physics integration, generated designs may be infeasible or violate 

structural safety requirements. 

 

c) Model Interpretability and Trust: Engineering applications demand interpretability and 

traceability, especially when safety is involved. However, the latent representations learned 

by generative models are often difficult to interpret, making it challenging to justify 

decisions or understand why a particular design was generated. 

 

d) Integration Complexity: Embedding generative models into existing structural 

workflows, especially those involving FEA solvers, BIM systems, or CAD software, requires 

significant effort in interface development, data translation, and validation. Real-time 

interaction remains limited by computational overheads. 

 

e) Limited Adoption and Research Maturity: Despite growing interest, the application of 

GenAI in structural optimization remains in its infancy. Most studies are exploratory, with 

few benchmark datasets, no standardized evaluation metrics, and limited replication or 

industrial deployment. 

 

6. FUTURE DIRECTIONS 
 

The integration of Generative AI into structural optimization is still in its early stages, and 

future research must address several technical, theoretical, and application-oriented directions 

to unlock its full potential. One promising avenue lies in developing domain-adapted 

generative architectures that explicitly incorporate physics-based constraints, structural 

mechanics knowledge, and regulatory design codes. This would allow generative models to 

move beyond data-driven plausibility and toward engineering-validity, reducing the reliance 

on post-processing or simulation-based validation. 

Moreover, advancing hybrid frameworks that couple GenAI with traditional optimization 

solvers, surrogate models, or reinforcement learning agents can improve scalability and 

generalization across a wider range of structural problems, from early-stage conceptual design 

to detailed component-level optimization. The use of multimodal inputs (such as combining 



GENERATIVE ARTIFICIAL INTELLIGENCE IN STRUCTURAL OPTIMIZATION … 331 

textual prompts, sketches, and load conditions) and human-in-the-loop systems could further 

support collaborative design exploration, enabling engineers to interactively steer generative 

processes based on both quantitative performance and qualitative preferences. 

Lastly, future studies should emphasize benchmarking, interpretability, and 

trustworthiness of GenAI-generated designs. Establishing standard datasets, evaluation 

protocols, and open-source frameworks will be crucial for reproducibility and adoption in 

engineering practice. Additionally, ethical considerations, such as the risk of generating 

infeasible or unsafe designs, must be addressed through transparency, validation pipelines, 

and uncertainty quantification. These directions will shape a more robust and reliable future 

for GenAI-assisted structural optimization. 

 

 

7. CONCLUSION 
 

This study has reviewed the emerging intersection between Generative Artificial Intelligence 

and structural optimization, highlighting the opportunities, methodologies, and challenges 

involved. Generative models such as VAEs, GANs, diffusion models, and LLMs offer 

promising capabilities for design generation, inverse modeling, surrogate data augmentation, 

and multi-objective trade-off exploration. While early applications demonstrate potential in 

structural form discovery and performance-informed design, significant challenges remain, 

particularly in ensuring physical validity, interpretability, and integration with existing 

engineering workflows. As research advances, combining domain knowledge with generative 

architectures and hybrid optimization frameworks will be essential to fully realize the 

transformative potential of GenAI in structural design. 
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